

Blood 142 (2023) 4216-4217

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

613.ACUTE MYELOID LEUKEMIAS: CLINICAL AND EPIDEMIOLOGICAL

RUNX1 Mutation Does Not Significantly Impact the Outcome of Newly Diagnosedadult AML: A Retrospective **Study of Chinese AML Patients**

Chao-Ling Wan¹, Yuan-Hong Huang¹, Si-Man Huang¹, Tong-Tong Zhang¹, Kai-Wen Tan¹, Yan Qiu¹, Xiang-Dong Shen¹, Shuai-Shuai Ge¹, Han-Yu Cao¹, Yan-Yan Li¹, Songbai Liu², Qiao-Cheng Qiu¹, Haiping Dai¹, Sheng-Li Xue¹

Background

RUNX1 is one of the recurrent mutated genes in newly diagnosed acute myeloid leukemia (AML) with a frequency of 6%~15%. Although historically recognized as a provisional distinct entity, the AML subtype with RUNX1 mutations (AML- RUNX1 mut) was eliminated from the 2022 WHO classification system. With the update of AML diagnosis and treatment protocol, different outcomes of AML- RUNX1 muthave been reported. However, an in-depth study about the prognostic value of RUNX1 mutations, epecifically the classification change related to AML- RUNX1 mut in a large well-annotated cohort is lacking.

Methods

The clinical data of 1065 AML (excluding acute promyelocytic leukemia and RUNX1 germline mutations) patients according to WHO 2016 and treated from January 2017 to December 2021 at Jiangsu Institute of Hematology were retrospectively collected and analyzed after informed consent. All AML diagnosis samples were analyzed by targeted Next Generation Sequencing (NGS) panel covering 172 frequently mutated genes in hematological malignancies. Demographic and clinical data, disease characteristics at diagnosis, first-line treatment and clinical outcome data were available for all patients. The survival time of allogeneic hematopoietic stem cell transplantation patients was censored at the time of stem cell transfusion. Cytogenetic and molecular characteristics were used to classify patients into ELN2017 and ELN2022 risk groups (excluding the effect of RUNX1 mutation).

Results

RUNX1 mutations were detected in 112 (10.5%) patients, namely, 66 (58.9%) male and 46 (41.1%) female. A total of 132 RUNX1 alterations were detected with a medianvariant allelic frequency of 40% (3%'93%). RUNX1 mutations were associated with older age (48.5 vs. 46.0 years old, P=0.087) and antecedent myeloid disorders (6.3% vs. 1.0%, P<0.001). One or more comutations were detected in 106 (94.7%) AML- RUNX1 mut patients. The most frequent co-gene abnormalities were FLT3-ITD and DNMT3A mutations which represented the 23.2% and 18.7%. Mutations of CEBPA bZIP, NPM1 and translocations of t(8;21), t(16;16)/inv(16) were uncommon in AML- RUNX1 mut with a frequency of 6.3%, 1.8%, 2.7%, 0%, respectively (Table 1). Compared with AML with wild-type RUNX1 (AML- RUNX1 wt), AML- RUNX1 mut patients had a lower complete remission rate (19.6% vs. 29.7%, P=0.034), lower overall response rate (ORR) (73.5% vs. 84.3%, P=0.006) and higher no response rate (26.5% vs. 15.5%, P=0.021) in the first induction chemotherapy. When comparing groups based on the ELN2017 risk stratification criteria, no significant difference in ORR was observed between RUNX1 mut and RUNX1 wt patients in the favorable (91.2% vs. 94.0%, P=0.572), intermediate (75.0% vs. 78.4%, P=0.570) and adverse (63.3% vs. 71.4%, P=0.370) subgroups (Table 2). The median duration of follow-up of the entire cohort was 8.7 months (RUNX1 wt: 8.4 months; RUNX1 mut: 10.0 months). Comparing the two groups, patients with RUNX1 mutations had a lower 5-year overall survival (OS) rate (35.4% vs. 42.3%; HR=1.563; 95% CI: 1.091°2.237, P=0.026), but no significant difference was observed in the 5-year event-free survival (EFS) rate (40.8% vs. 35.4%; HR=1.084; 95% CI: 0.750~1.570, P=0.098) (**Table 2**). However, when patients were stratified according to the ELN2017 guidelines (excluding the effect of RUNX1 mutation), outcomes did not differ between patients withor without RUNX1 mutation in the favorable (OS: P=0.629, EFS: P=0.137), intermediate (OS: P=0.629, EFS: P=0.114) and adverse (OS: P=0.544; EFS: P=0.714) subgroups. Similar results were obtained according to the ELN2022 guidelines. In multivariate analysis, RUNX1 was not an independent prognostic factor for OS (HR=1.353, 95% CI: 0.922~1.985, P=0.122) and EFS (HR=1.422, 95% CI: 0.975~2.075, P=0.068), while significantly worse OS and EFS were observed in patients with mutated FLT3-ITD, TP53, and DNMT3A (P-values were all less than 0.05).

¹Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China

²Suzhou Vocational Health College, Suzhou, CHN

POSTER ABSTRACTS Session 613

Conclusion

RUNX1 mutations were rarely isolated genetic abnormities that conferred inferior outcomes. However, on the basis of ELN prognosis risk stratification, RUNX1mutation had no impact on the clinical outcomes of AML patients in stratified subgroups. RUNX1 was not an independent prognostic factor for survival. Overall, our findings agree with the updated WHO classification system for AML that AML- RUNX1 mut should not be recognized as a distinct AML entity.

Disclosures No relevant conflicts of interest to declare.

Table 1.	Patients'	clinical	charact	teristics
----------	-----------	----------	---------	-----------

Characteristic	Mutated RUNX1	Wild-type RUNX1	P
	n=112	n=953	
Median age, years (range)	48.5 (18-79)	46.0 (18-78)	0.087
Male sex, n (%)	66 (58.9)	517 (54.2)	0.347
AML history, n (%)			
De novo	104 (92.9)	928 (97.4)	0.009
Secondary	7 (6.3)	10 (1.0)	< 0.001
Therapy-related	1 (0.9)	15 (1.6)	1.000
Hematological parameters			
Median WBC count, ×109/L (range)	9.7 (0.46-286.98)	15.2 (0.32-466.55)	0.005
Median Plt count, ×109/L (range)	42.5 (5-332.4)	40.0 (2-813)	0.774
Median Hb, g/L (range)	75.5 (31-122)	81.0 (25-155)	0.029
Median bone marrow blasts, % (range)	55.0 (17-98.0)	57.0 (3-99.5)	0.635
ELN Risk 2017, n (%)			
Favorable	13 (11.6)	453 (47.5)	< 0.001
Intermediate	67 (59.8)	290 (30.4)	
Adverse	32 (28.6)	210 (22.0)	
ELN Risk 2022, n (%)			
Favorable	13 (11.6)	381 (40.0)	< 0.001
Intermediate	42 (37.5)	346 (36.3)	
Adverse	57 (50.9)	226 (23.7)	
Chromosomal aberration, n (%)			
Normal karyotype	73 (65.2)	587 (61.6)	0.460
t(8;21)	3 (2.7)	97 (10.2)	0.009
inv(16)/t(16;16)	0	45 (4.7)	0.011
del(7q)/-7 in noncomplex karyotype	2 (1.8)	15 (1.6)	0.697
del(5q)/-5 in noncomplex karyotype	1 (0.9)	5 (0.5)	0.487
t(v;11q23.3)	3 (2.7)	16 (1.7)	0.441
Complex karyotype	6 (5.4)	42 (4.4)	0.647
Comutations, n (%)			
CEBPA bZIP	7 (6.3)	184 (19.3)	0.001
NPM1	2 (1.8)	241 (25.3)	< 0.001
FLT3-ITD	26 (23.2)	226 (23.7)	0.906
ASXLI	16 (14.3)	54 (5.7)	< 0.001
TP53	6 (5.4)	40 (4.2)	0.568
U2AF1	8 (7.1)	47 (4.9)	0.317
SRSF2	7 (6.3)	17 (1.8)	0.003
SF3B1	7 (6.3)	10 (1.0)	< 0.001
ZRSR2	3 (2.7)	7 (0.7)	0.078
BCOR	20 (17.9)	31 (3.3)	< 0.001
EZH2	8 (7.1)	35 (3.7)	0.078

Mutated RUNX1 n=843 n=102 Response, n (%) 20 (19.6) 250 (29.7) 0.034 CRi 21 (20.6) 243 (28.8) 0.080

Table 2. Univariate outcome analyses according to RUNX1 mutation status.

MLFS	19 (18.6)	126 (15.0)	0.330
PR	15 (14.7)	93 (11.0)	0.271
NR	27 (26.5)	131 (15.5)	0.021
ORR (CR/CRi/MLFS/PR), n (%)			
All	75 (73.5)	711 (84.3)	0.006
Favorable-risk	11 (91.2)	390 (94.0)	0.572
intermediate-risk	45 (75.0)	196 (78.4)	0.570
adverse-risk	19 (63.3)	125 (71.4)	0.370
os	n=102	n=843	0.026
Median, years	25.9	40.4	
95% CI	6.1~45.7	24.1~56.8	
5-year OS (%)	35.4%	42.3%	
EFS	n=87	n=748	0.098
Median, years	21.3	23.1	
95% CI	0.69~42.0	16.3~30.0	
5-year FFS (%)	40.8%	35.4%	

CR: complete remission, CRi: CR with incomplete blood count recovery, MLFS morphologic leukemia-free state, PR: partial remission, NR: no response, ORR overall response rate, OS: overall survival, EFS: event-free survival.

WBC: White blood cell, Plt: Platelet, Hb: Hemoglobin, ELN: European LeukemiaNet. Risk stratification according to the ELN guidelines, excluding the effect of RUNX1 mutations.

Figure 1

https://doi.org/10.1182/blood-2023-185390